
Lets Talk Unity
Ashley and Griffin

(you can tell who chose this vibe)

ENTER

The Plans

Intro to Space
Invaders

Working with the assets

Coding Basics
Got to know this before

moving on to more

Live
Demonstration

Making our first 3d game

01

02

03

04

Coding Basics

Unity is made in C# quite similar
to Java

01.01

02

03

04

What is C#?

• C# is an object-oriented language developed by Microsoft
• Object-oriented: Code is organized into blocks called "objects"

(classes) that have their own data and functionality
o Helpful for separating game objects so that they don’t

interfere
o Called Object-Oriented Programming (OOP)

• Many of the concepts from other programming languages (Java,
Scratch, etc.) transfer into C#

01

02

03

04

Variables

● Variables are stored values in the computer that we can change
and compare to alter our code's functionality

● Every variable has two parts:
○ A type, which determines what kind of data it can store,
○ A value, which is the actual content of the variable

● In OOP, variables can also have access modifiers, which
determines where their data can be accessed from

● In C#, we create a new variable like this:
○ <access modifier> <type> variableName = <value>;

01

02

03

04

Variable Types

● Let's talk about some basic variable types!
● int (short for integer) - stores whole number values

○ private int points = 0;
● float (floating point number) - stores decimal numbers

○ private float position = 5.4F;
● double (double precision float) - float with more information

○ public double x_position = 3.24534D;
● string – a series of letters and numbers

○ public string myName = "Griffin";
● bool (short for boolean) – a number that can be true or false

○ bool gameOver = false;

01

02

03

04

Let's practice declaring variables!

● How would I create a variable for the user's favorite color?
● Fill in the blanks:

○ public <type> favoriteFood = "pizza";
○ public <type> pi = <value>;
○ public <type> itsRaining = false;

01

02

03

04

Methods

● A group of code instructions that take in some value and produce
output

● Part of a class
● Values given to functions are known as arguments

○ Arguments look like variables (have a type and a name)
● Values produce their output either by executing code or giving an

explicit return value
○ Return values also have a type

● Methods can also have access modifiers, but we won't really deal
with that now

01

02

03

04

Method Example

01

02

03

04

Control Flow

● So we have some variables that have values...
● How do we control how our code executes?
● Most basic is an if statement which runs code only if a certain

condition is met
○ Your condition has a bool type because it can only be true or

false

01

02

03

04

If statement examples

01

02

03

04

If-else statement

● Sometimes we only want to run code if a statement is not true
● We could do this outright (create a boolean that has the opposite

value of what we're looking for) or...
● We could use an if-else statement!
● If the condition is true, it runs the if portion, otherwise it runs the

else portion

01

02

03

04

If-else statement example

01

02

03

04

Doing things over and over again...

● What if we wanted to run a certain of instructions multiple times?
● Once again, we could do this outright by copy-pasting the code we

want to run a bunch of times...
○ Does this always work?

● Ponder this example: The user is taking some number of classes
that we don't know and we want to get all the names of their
classes
○ First we ask them how many classes they are taking and

store it in a variable
○ How many times do we copy-paste the code to ask the name

of the class...?

01

02

03

04

Loops

● For this, we use a loop which is a way of telling the computer we
want to run a

● The easiest type of loop is a while loop which is similar to an if
statement repeated many times

● The code in a defined section will run as long as a certain boolean
value or condition is true

01

02

03

04

While loop example

01

02

03

04

For loop

● The other type of loop in C# is known as a for loop which is makes
it easier to write code in exchange for being a bit harder to
understand

● For loops create a variable, check a condition, and update
● There are 4 parts to a for loop:

○ Initializer – the code that initializes the variable that will be
updated during each iteration

○ Condition – what we will check about the variable during
each iteration

○ Updater – the code that changes the variable during each
iteration

○ Code – the actual code that will run on each iteration

01

02

03

04

For loop structure

01

02

03

04

For loop example

01

02

03

04

What code looks like in Unity

● This is a boilerplate for a new behavior in Unity
named "NewBehaviorScript"

● It has two methods, one called "Start" and one
called "Update"

● The code in "Start" will be called once when the
program starts, "Update" called every frame

● What are the arguments of Start?
● What is the return type of Start?
● What is the access modifier of

NewBehaviourScript?

01

02

03

04

Remember access modifiers?

● Access modifiers control where we see our
variables

● Private variables are only visible/changeable from
within our code

● Public variables are visible/changeable from the
Unity editor
○ Helpful for passing information from our

game to our code

01

02

03

04

Dodgeball

Slides and Demos and Fun(?)
(oh my!)

02.01

02

03

04

01

02

03

04

The Goal….kinda

To the Unity
Hub!

We will be working all at the same
time making this game together.
So if you have any questions at all
or if we are going too fast stop us

01

02

03

04

Introduction to

Storyboarding

Design Thinking
Design Thinking is a process that all designers use to create and

implement creative projects.

What is a

storyboard?
A Storyboard is a low-fidelity prototype that serves to

help you sequentially plan out a scene. It is a way to

create visual notes that aids you in understanding

how your story will play out.

How Storyboarding Helps

VISUALS
- By drawing out your

ideas, you have a better

picture of the game in

your head. The quality of

the drawings to a

storyboard doesn’t

matter, the purpose is to

provoke visual thought.

PACE
- As you approach the

storyboarding process,

you must choose what is

important to convey and

how to convey it. This

allows for a natural

pacing to form.

PRODUCT

- These storyboards are

for you, they are your

notes. Creating a

storyboard provides

you with a physical

product that you can

look over, refer back

to, and edit as you

wish.

TLDR: Storyboarding can kickstart the creative process and
change the way that you imagine the game.

Figma is a free software used by designers to

create storyboards, low and high-fidelity

prototypes. It is most widely used for UX/UI

Designers for prototyping mobile apps.

Figma

Paige’s Figma Prototype

https://www.figma.com/file/G3J43UJXZEuOoeCiRBXa5v/Pick-up?type=design&node-id=0-1&mode=design&t=wAd4OmdlgaWPcomP-0

Figma is a free software used by designers to

create storyboards, low and high-fidelity

prototypes. It is most widely used for UX/UI

Designers for prototyping mobile apps.

Figma

Paige’s Figma Prototype

https://www.figma.com/file/G3J43UJXZEuOoeCiRBXa5v/Pick-up?type=design&node-id=0-1&mode=design&t=wAd4OmdlgaWPcomP-0

Persona 5 Royal: ATLUS
Storyboard
Clip: (0:37-0:52)

https://www.youtube.com/watch?v=vWWy7V9rCrA

